Two-stage phone duration modelling with feature construction and feature vector extension for the needs of speech synthesis
نویسندگان
چکیده
We propose a two-stage phone duration modelling scheme, which can be applied for the improvement of prosody modelling in speech synthesis systems. This scheme builds on a number of independent feature constructors (FCs) employed in the first stage, and a phone duration model (PDM) which operates on an extended feature vector in the second stage. The feature vector, which acts as input to the first stage, consists of numerical and non-numerical linguistic features extracted from text. The extended feature vector is obtained by appending the phone duration predictions estimated by the FCs to the initial feature vector. Experiments on the American-English KED TIMIT and on the Modern Greek WCL-1 databases validated the advantage of the proposed two-stage scheme, improving prediction accuracy over the best individual predictor, and over a two-stage scheme which just fuses the first-stage outputs. Specifically, when compared to the best individual predictor, a relative reduction in the mean absolute error and the root mean square error of 3.9% and 3.9% on the KED TIMIT, and of 4.8% and 4.6% on the WCL-1 database, respectively, is observed.
منابع مشابه
Feature extraction in opinion mining through Persian reviews
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...
متن کاملSemi-parametric trajectory modelling using temporally varying feature mapping for speech recognition
Recently, trajectory HMM has been shown to improve the performance of both speech recognition and speech synthesis. For efficiency, state sequence is required to compute likelihood for trajectory HMM which limits its use to N -best rescoring for speech recognition. Motivated by the success of models with temporally varying parameters, this paper proposes a Temporally Varying Feature Mapping (TV...
متن کاملFeature Selection for Improved Phone Duration Modeling of Greek Emotional Speech
In the present work we address the problem of phone duration modeling for the needs of emotional speech synthesis. Specifically, relying on ten well known machine learning techniques, we investigate the practical usefulness of two feature selection techniques, namely the Relief and the Correlation-based Feature Selection (CFS) algorithms, for improving the accuracy of phone duration modeling. T...
متن کاملQuantitative Modeling of Segmental Duration
In natural speech, durations of phonetic segments are strongly dependent on contextual factors. Quantitative descriptions of these contextual effects have appfications in text-to-speech synthesis and in automatic speech recognition. In this paper, we describe a speakerdependent system for predicting segmental duration from text, with emphasis on the statistical methods used for its construction...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Speech & Language
دوره 26 شماره
صفحات -
تاریخ انتشار 2012